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Uninformed search
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Uniform Cost Search

• Strategy: expand lowest path cost

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location

Start Goal

…

c £ 3

c £ 2

c £ 1

3



UCS example
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What we would like to have happen

Guide search towards the goal instead of all over the place

Start Goal
Start Goal

UninformedInformed
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Example: Route-finding in Romania
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h(n) = straight-line distance to Bucharest
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Search heuristics
• A heuristic is:
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• Examples: Manhattan distance, Euclidean distance for pathing
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Example: Pathing in pacman

§ h(n) = Manhattan distance = |Dx| + |Dy|
§ Is Manhattan better than straight-line distance?
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Greedy Best First Search
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Greedy Best First Search
• Priority queue based on ℎ(𝑛)
• e.g., ℎ!"# 𝑛 = straight-line distance from n to Bucharest

• Greedy search expands the node that appears to be
closest to goal

Greedy
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Greedy Best First Search
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Greedy Best First Search

• Strategy: expand a node that you think is closest to a
goal state
• Heuristic: estimate of distance to nearest goal for each state

• A common case:
• Best-first takes you straight to the (wrong) goal

• Worst-case: like a badly-guided DFS

…
b

…
b
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Properties of greedy search
• Complete? No
• Similar to DFS, only graph search version is complete in finite spaces
• Infinite loops, e.g., (Iasi to Fagaras) Iasi à Neamt à Iasi à Neamt

• Time
• 𝑂(𝑏𝑚), but a good heuristic can give dramatic improvement

• Space
• 𝑂(𝑏𝑚): keeps all nodes in memory

• Optimal? No
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Video of demo contours greedy (Empty)
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Video of demo contours greedy
(Pacman small maze)
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A* search
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A*: The core idea

• Expand a node nmost likely to be on an optimal path
• Expand a node n s.t. the cost of the best solution through n is optimal
• Expand a node n with lowest value of g(n) + h*(n)
• g(n) is the cost from root to n
• h*(n) is the optimal cost from n to the closest goal

• We seldom know h*(n) but might have a heuristic approximation h(n)
• A* = tree search with priority queue ordered by f(n) = g(n) + h(n)
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A* search
• Idea: minimizing the total estimated solution cost
• Evaluation function for priority 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)
• 𝑔 𝑛 = cost so far to reach 𝑛
• ℎ 𝑛 = estimated cost of the cheapest path from 𝑛 to goal
• So, 𝑓 𝑛 = estimated total cost of path through 𝑛 to goal
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start n… goal…

Actual cost 𝑔 𝑛 Estimated cost ℎ 𝑛

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)



A*: Combining UCS and Greedy

• Uniform-cost orders by path cost, or backward cost g(n)
• Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)
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A* termination
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• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal



Is A* Optimal?

What went wrong?
• Actual bad solution cost < estimated good solution cost
• We need estimates to be less than actual costs!
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Admissible Heuristics
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Idea: Admissibility

Inadmissible (pessimistic) heuristics break 
optimality by trapping good plans on the frontier

Admissible (optimistic) heuristics slow down 
bad plans but never outweigh true costs
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Admissible Heuristics

• A heuristic h is admissible (optimistic) if:

• where is the true cost to a nearest goal

• Examples:

• Coming up with admissible heuristics is most of what’s
involved in using A* in practice.

15
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A* search: example
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Optimality of A* Tree Search
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Optimality of A* Tree Search

Assume:
• A is an optimal goal node
• B is a suboptimal goal node
• h is admissible

Claim:

• A will exit the frontier before B

…
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Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

28
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Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

𝑓 𝑛 ≤ 𝑔 𝑛 + ℎ∗(𝑛)
𝑔 𝐴 = 𝑔 𝑛 + ℎ∗(𝑛)
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Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

…
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Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…
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Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

…
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Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

• All ancestors of A expand before B
• A expands before B
• A* search is optimal

…
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Graph Search
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• Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!
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Graph Search

• Idea: never expand a state twice

• How to implement:
• Tree search + set of expanded states (“closed set”)
• Expand the search tree node-by-node, but…
• Before expanding a node, check to make sure its state has never been expanded before
• If not new, skip it, if new add to closed set

• Important: store the closed set as a set, not a list

• Can graph search wreck completeness? Why/why not?

• How about optimality?

36



A* Graph Search Gone Wrong?
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Simple check against expanded set blocks C

Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants



Conditions for optimality of A*

• Admissibility: ℎ(𝑛) be a lower bound on the cost to reach goal
• Condition for optimality of TREE-SEARCH version of A*

• Consistency (monotonicity): ℎ 𝑛 ≤ 𝑐 𝑛, 𝑎, 𝑛* + ℎ 𝑛*
• Condition for optimality of GRAPH-SEARCH version of A*

38

𝑛

𝑛′

𝐺
ℎ(𝑛′)

ℎ(𝑛)

𝑐(𝑛, 𝑎, 𝑛′)

𝑐 𝑛, 𝑎, 𝑛# : cost of generating 𝑛′ by applying action to 𝑛

for every node 𝑛 and every successor
𝑛# generated by any action 𝑎

ℎ 𝑛 ≤ 𝑐 𝑛, 𝑎, 𝑛# + ℎ 𝑛#



Consistency implies admissibility
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• Consistency ⇒ Admissblity
• All consistent heuristic functions are admissible
• Nonetheless, most admissible heuristics are also consistent

ℎ 𝑛$ ≤ 𝑐 𝑛$, 𝑎$, 𝑛% + ℎ(𝑛%)
≤ 𝑐 𝑛$, 𝑎$, 𝑛% + 𝑐 𝑛%, 𝑎%, 𝑛& + ℎ(𝑛&)
…
≤ ∑'($) 𝑐 𝑛' , 𝑎' , 𝑛'*$ + ℎ(G)

𝑛$ 𝑛% 𝑛& 𝑛) 𝐺…
𝑐(𝑛$, 𝑎$, 𝑛%) 𝑐(𝑛) , 𝑎) , 𝐺)𝑐(𝑛%, 𝑎%, 𝑛&)



Consistency implies admissibility
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• Consistency ⇒ Admissblity
• All consistent heuristic functions are admissible
• Nonetheless, most admissible heuristics are also consistent

ℎ 𝑛$ ≤ 𝑐 𝑛$, 𝑎$, 𝑛% + ℎ(𝑛%)
≤ 𝑐 𝑛$, 𝑎$, 𝑛% + 𝑐 𝑛%, 𝑎%, 𝑛& + ℎ(𝑛&)
…
≤ ∑'($) 𝑐 𝑛' , 𝑎' , 𝑛'*$ + ℎ(G)

𝑛$ 𝑛% 𝑛& 𝑛) 𝐺…
𝑐(𝑛$, 𝑎$, 𝑛%) 𝑐(𝑛) , 𝑎) , 𝐺)𝑐(𝑛%, 𝑎%, 𝑛&)

0



Consistency implies admissibility

41

• Consistency ⇒ Admissblity
• All consistent heuristic functions are admissible
• Nonetheless, most admissible heuristics are also consistent

ℎ 𝑛$ ≤ 𝑐 𝑛$, 𝑎$, 𝑛% + ℎ(𝑛%)
≤ 𝑐 𝑛$, 𝑎$, 𝑛% + 𝑐 𝑛%, 𝑎%, 𝑛& + ℎ(𝑛&)
…
≤ ∑'($) 𝑐 𝑛' , 𝑎' , 𝑛'*$ + ℎ(G)

𝑛$ 𝑛% 𝑛& 𝑛) 𝐺…
𝑐(𝑛$, 𝑎$, 𝑛%) 𝑐(𝑛) , 𝑎) , 𝐺)𝑐(𝑛%, 𝑎%, 𝑛&)

0 ⇒ ℎ 𝑛$ ≤ cost of (every) path from 𝑛$ to goal
≤ cost of optimal path from 𝑛$ to goal



Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:
The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

42
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Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:
The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

A

Ch=4 h=1
1
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Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:
The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

A

Ch=4 h=1
1
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or h(A) ≤ c(A,C) + h(C) (triangle inequality)
Note: h* necessarily satisfies triangle inequality

G



Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:
The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

A

Ch=4 h=1
1

h=3
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Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

• Consequences of consistency:
• The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

=> g(A) + h(A) ≤ g(A) + c(A,C) + h(C)

=> f(A) ≤ g(C)+h(C)=f(C)

• A* graph search is optimal

A

Ch=4 h=1
1

h=3
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Optimality of A* Graph Search

• Sketch: consider what A* does with a
consistent heuristic:

• Fact 1: A* expands nodes in increasing total 𝑓
value (f-contours)

• Fact 2: For every state 𝑠, nodes that reach 𝑠
optimally are expanded before nodes that
reach 𝑠 suboptimally

• Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1
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Optimality
• Tree search:
• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

• Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h = 0 is consistent)

• Consistency implies admissibility

• In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

48



Admissible vs. Consistent 
(Tree vs. Graph Search) 

49

• Consistent heuristic: When selecting a node for expansion, the
path with the lowest cost to that node has been found

• When an admissible heuristic is not consistent, a node will
need repeated expansion, every time a new best (so-far) cost
is achieved for it.



Contours in the state space
• A* (using GRAPH-SEARCH) expands nodes in order of

increasing 𝑓 value
• Gradually adds "f-contours" of nodes
• Contour 𝑖 has all nodes with 𝑓 = 𝑓' where𝑓' < 𝑓'+1

50

A* expands all nodes with f(n) < C*
A* expands some nodes with f(n) = C* (nodes on the goal contour)
A* expands no nodes with f(n) > C*⟹ pruning



Properties of A*

…
b

…
b

Uniform-Cost A*
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UCS vs A* Contours

• Uniform-cost (A* using ℎ(𝑛) = 0) expands
equally in all “directions”

• A* expands mainly toward the goal, but
does hedge its bets to ensure optimality
• More accurate heuristics stretched toward the goal

(more narrowly focused around the optimal path)

Start Goal

Start Goal

States are points in 2-D Euclidean space.
g(n)=distance from start
h(n)=estimate of distance from goal
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Video of Demo Contours (Empty) -- UCS
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Video of Demo Contours (Empty) -- Greedy
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Video of Demo Contours (Empty) – A*
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Video of Demo Contours (Pacman Small 
Maze) – A*
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Comparison

Greedy (h) Uniform Cost (g) A* (g+h)

57



Robot navigation example
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• Initial state? Red cell

• States? Cells on rectangular grid (except to obstacle)
• Actions? Move to one of 8 neighbors (if it is not obstacle)
• Goal test? Green cell
• Path cost? Action cost is the Euclidean length of movement



A* vs. UCS: Robot navigation example
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• Heuristic: Euclidean distance to goal

• Expanded nodes: filled circles in red & green
• Color indicating 𝑔 value (red: lower, green: higher)

• Frontier: empty nodes with blue boundary

• Nodes falling inside the obstacle are discarded

Adopted from: http://en.wikipedia.org/wiki/A*_search_algorithm 



Robot navigation: Admissible heuristic
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• Is Manhattan 𝑑! 𝑥, 𝑦 = 𝑥" − 𝑦" + 𝑥# − 𝑦# distance
an admissible heuristic for previous example?



A*: Inadmissible heuristic 

61

ℎ = ℎ_𝑆𝐿𝐷ℎ = 5 ∗ ℎ_𝑆𝐿𝐷

Adopted from: http://en.wikipedia.org/wiki/A*_search_algorithm 



A*: Summary
• A* orders nodes in the queue by f(n) = g(n) + h(n)
• A* uses both backward costs and (estimates of) forward costs

• A* is optimal for trees/graphs with admissible/consistent heuristics

• Heuristic design is key: often use relaxed problems

g

g

h h
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Creating Heuristics
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Relaxed problem

64

• Relaxed problem: Problem with fewer restrictions on the
actions

• Optimal solution to the relaxed problem may be computed
easily (without search)

• The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem
• The optimal solution is the shortest path in the super-graph of the state-

space.



Creating Admissible Heuristics
• Most of the work in solving hard search problems optimally is in coming

up with admissible heuristics

• Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

• Problem P2 is a relaxed version of P1 if A2(s)ÊA1(s) for every s

• Theorem: h2
*(s) £ h1

*(s) for every s, so h2
*(s) is admissible for P1

• Inadmissible heuristics are often useful too

15
366

65



Example: 8 Puzzle

• What are the states?
• How many states?
• What are the actions?
• What are the step costs?

Start State Goal StateActions
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8 Puzzle I

• Heuristic: Number of tiles misplaced
• Why is it admissible?
• h(start) = 8

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore
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8 Puzzle II

• What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

• Total Manhattan distance= sum of
Manhattan distance of tiles from their
target position

• Why is it admissible?

• h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

A*TILES 13 39 227
A*MANHATTAN 12 25 73

Start State Goal State
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Relaxed problem: 8-puzzle
• 8-Puzzle: move a tile from square A to B if A is adjacent
(left, right, above, below) to B and B is blank
• Relaxed problems

1. can move from A to B if A is adjacent to B (ignore whether or not
position is blank)

2. can move from A to B if B is blank (ignore adjacency)
3. can move from A to B (ignore both conditions)

• Admissible heuristics for original problem (ℎ1(𝑛) and
ℎ2(𝑛)) are optimal path costs for relaxed problems
• First case: a tile can move to any adjacent square ⇒ ℎ2(𝑛)

• Third case: a tile can move anywhere⇒ ℎ1(𝑛)
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Combining heuristics
• Dominance: h1 ≥ h2 if "n: h1(n) ³ h2(n)
• Roughly speaking, larger is better as long as both are admissible
• The zero heuristic is pretty bad (what does A* do with h=0?)
• The exact heuristic is pretty good, but usually too expensive!

• What if we have two heuristics, neither dominates the other?
• Form a new heuristic by taking the max of both:

h(n) = max(h1(n), h2(n))
• Max of admissible heuristics is admissible and dominates both!
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Heuristic quality
• If ∀𝑛, ℎ2(𝑛) ≥ ℎ1(𝑛) (both admissible)

then ℎ2 dominates ℎ1 and it is better for search

• Surely expanded nodes: 𝑓 𝑛 < 𝐶∗ ⇒ ℎ 𝑛 < 𝐶∗ − 𝑔 𝑛
• If ℎ2(𝑛) ≥ ℎ1(𝑛) then every node expanded for ℎ2 will also be surely

expanded with ℎ1 (ℎ1 may also causes some more node expansion)
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8 Puzzle: heuristic 

• How about using the actual cost as a heuristic?
• Would it be admissible?
• Would we save on nodes expanded?
• What’s wrong with it?

• With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but usually

do more work per node to compute the heuristic itself
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Example: Knight’s moves
• Minimum number of knight’s moves to get from A to B?
• h1 = (Manhattan distance)/3

• h1’ = h1 rounded up to correct parity (even if A, B same color, odd otherwise)

• h2 = (Euclidean distance)/√5 (rounded up to correct parity)
• h3 = (max x or y shift)/2 (rounded up to correct parity)

• h(n) = max( h1’(n), h2(n), h3(n)) is admissible!
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A* Applications
• Video games
• Pathing / routing problems
• Resource planning problems
• Robot motion planning
• Language analysis
• Machine translation
• Speech recognition
• Protein design
• Chemical synthesis
• …
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Memory bounded methods
• A* keeps the entire explored region in memory
• => will run out of space before you get bored waiting for the answer
• There are variants that use less memory (Section 3.5.5):
• IDA* works like IDS, except it uses an f-limit instead of a depth limit
• RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best

alternative path available from any ancestor of the current node
• SMA* uses all available memory for the queue, minimizing thrashing
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