
CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2023

Most slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.

Informed Search: A* Algorithm

Soleymani

Uninformed search

2

Uniform Cost Search

• Strategy: expand lowest path cost

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location

Start Goal

…

c £ 3

c £ 2

c £ 1

3

UCS example

4

What we would like to have happen

Guide search towards the goal instead of all over the place

Start Goal
Start Goal

UninformedInformed

5

Example: Route-finding in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

h(n) = straight-line distance to Bucharest

6

Search heuristics
• A heuristic is:
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• Examples: Manhattan distance, Euclidean distance for pathing

7

10

5

11.2

Example: Pathing in pacman

§ h(n) = Manhattan distance = |Dx| + |Dy|
§ Is Manhattan better than straight-line distance?

10

5

11.2

8

Greedy Best First Search

9

Greedy Best First Search
• Priority queue based on ℎ(𝑛)
• e.g., ℎ!"# 𝑛 = straight-line distance from n to Bucharest

• Greedy search expands the node that appears to be
closest to goal

Greedy

10

Greedy Best First Search

11

Greedy Best First Search

• Strategy: expand a node that you think is closest to a
goal state
• Heuristic: estimate of distance to nearest goal for each state

• A common case:
• Best-first takes you straight to the (wrong) goal

• Worst-case: like a badly-guided DFS

…
b

…
b

12

Properties of greedy search
• Complete? No
• Similar to DFS, only graph search version is complete in finite spaces
• Infinite loops, e.g., (Iasi to Fagaras) Iasi à Neamt à Iasi à Neamt

• Time
• 𝑂(𝑏𝑚), but a good heuristic can give dramatic improvement

• Space
• 𝑂(𝑏𝑚): keeps all nodes in memory

• Optimal? No

13

Video of demo contours greedy (Empty)

14

Video of demo contours greedy
(Pacman small maze)

15

A* search

16

A*: The core idea

• Expand a node nmost likely to be on an optimal path
• Expand a node n s.t. the cost of the best solution through n is optimal
• Expand a node n with lowest value of g(n) + h*(n)
• g(n) is the cost from root to n
• h*(n) is the optimal cost from n to the closest goal

• We seldom know h*(n) but might have a heuristic approximation h(n)
• A* = tree search with priority queue ordered by f(n) = g(n) + h(n)

17

A* search
• Idea: minimizing the total estimated solution cost
• Evaluation function for priority 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)
• 𝑔 𝑛 = cost so far to reach 𝑛
• ℎ 𝑛 = estimated cost of the cheapest path from 𝑛 to goal
• So, 𝑓 𝑛 = estimated total cost of path through 𝑛 to goal

18

start n… goal…

Actual cost 𝑔 𝑛 Estimated cost ℎ 𝑛

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

A*: Combining UCS and Greedy

• Uniform-cost orders by path cost, or backward cost g(n)
• Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

19

A* termination

20

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal

Is A* Optimal?

What went wrong?
• Actual bad solution cost < estimated good solution cost
• We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

21

Admissible Heuristics

22

Idea: Admissibility

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the frontier

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

23

Admissible Heuristics

• A heuristic h is admissible (optimistic) if:

• where is the true cost to a nearest goal

• Examples:

• Coming up with admissible heuristics is most of what’s
involved in using A* in practice.

15

24

A* search: example

25

Optimality of A* Tree Search

26

Optimality of A* Tree Search

Assume:
• A is an optimal goal node
• B is a suboptimal goal node
• h is admissible

Claim:

• A will exit the frontier before B

…

27

Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

28

…

Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

𝑓 𝑛 ≤ 𝑔 𝑛 + ℎ∗(𝑛)
𝑔 𝐴 = 𝑔 𝑛 + ℎ∗(𝑛)

29

Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

…

30

Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…

31

Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

…

32

Optimality of A* Tree Search: Blocking

Proof:
• Imagine B is on the frontier
• Some ancestor n of A is on the

frontier, too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

• All ancestors of A expand before B
• A expands before B
• A* search is optimal

…

33

Graph Search

34

• Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

35

Graph Search

• Idea: never expand a state twice

• How to implement:
• Tree search + set of expanded states (“closed set”)
• Expand the search tree node-by-node, but…
• Before expanding a node, check to make sure its state has never been expanded before
• If not new, skip it, if new add to closed set

• Important: store the closed set as a set, not a list

• Can graph search wreck completeness? Why/why not?

• How about optimality?

36

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

37

Simple check against expanded set blocks C

Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants

Conditions for optimality of A*

• Admissibility: ℎ(𝑛) be a lower bound on the cost to reach goal
• Condition for optimality of TREE-SEARCH version of A*

• Consistency (monotonicity): ℎ 𝑛 ≤ 𝑐 𝑛, 𝑎, 𝑛* + ℎ 𝑛*
• Condition for optimality of GRAPH-SEARCH version of A*

38

𝑛

𝑛′

𝐺
ℎ(𝑛′)

ℎ(𝑛)

𝑐(𝑛, 𝑎, 𝑛′)

𝑐 𝑛, 𝑎, 𝑛# : cost of generating 𝑛′ by applying action to 𝑛

for every node 𝑛 and every successor
𝑛# generated by any action 𝑎

ℎ 𝑛 ≤ 𝑐 𝑛, 𝑎, 𝑛# + ℎ 𝑛#

Consistency implies admissibility

39

• Consistency ⇒ Admissblity
• All consistent heuristic functions are admissible
• Nonetheless, most admissible heuristics are also consistent

ℎ 𝑛$ ≤ 𝑐 𝑛$, 𝑎$, 𝑛% + ℎ(𝑛%)
≤ 𝑐 𝑛$, 𝑎$, 𝑛% + 𝑐 𝑛%, 𝑎%, 𝑛& + ℎ(𝑛&)
…
≤ ∑'($) 𝑐 𝑛' , 𝑎' , 𝑛'*$ + ℎ(G)

𝑛$ 𝑛% 𝑛& 𝑛) 𝐺…
𝑐(𝑛$, 𝑎$, 𝑛%) 𝑐(𝑛) , 𝑎) , 𝐺)𝑐(𝑛%, 𝑎%, 𝑛&)

Consistency implies admissibility

40

• Consistency ⇒ Admissblity
• All consistent heuristic functions are admissible
• Nonetheless, most admissible heuristics are also consistent

ℎ 𝑛$ ≤ 𝑐 𝑛$, 𝑎$, 𝑛% + ℎ(𝑛%)
≤ 𝑐 𝑛$, 𝑎$, 𝑛% + 𝑐 𝑛%, 𝑎%, 𝑛& + ℎ(𝑛&)
…
≤ ∑'($) 𝑐 𝑛' , 𝑎' , 𝑛'*$ + ℎ(G)

𝑛$ 𝑛% 𝑛& 𝑛) 𝐺…
𝑐(𝑛$, 𝑎$, 𝑛%) 𝑐(𝑛) , 𝑎) , 𝐺)𝑐(𝑛%, 𝑎%, 𝑛&)

0

Consistency implies admissibility

41

• Consistency ⇒ Admissblity
• All consistent heuristic functions are admissible
• Nonetheless, most admissible heuristics are also consistent

ℎ 𝑛$ ≤ 𝑐 𝑛$, 𝑎$, 𝑛% + ℎ(𝑛%)
≤ 𝑐 𝑛$, 𝑎$, 𝑛% + 𝑐 𝑛%, 𝑎%, 𝑛& + ℎ(𝑛&)
…
≤ ∑'($) 𝑐 𝑛' , 𝑎' , 𝑛'*$ + ℎ(G)

𝑛$ 𝑛% 𝑛& 𝑛) 𝐺…
𝑐(𝑛$, 𝑎$, 𝑛%) 𝑐(𝑛) , 𝑎) , 𝐺)𝑐(𝑛%, 𝑎%, 𝑛&)

0 ⇒ ℎ 𝑛$ ≤ cost of (every) path from 𝑛$ to goal
≤ cost of optimal path from 𝑛$ to goal

Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:
The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

42

3

A

C

G

h=4
1

h=1

Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:
The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

A

Ch=4 h=1
1

43

G

Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:
The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

A

Ch=4 h=1
1

44

or h(A) ≤ c(A,C) + h(C) (triangle inequality)
Note: h* necessarily satisfies triangle inequality

G

Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

Consequences of consistency:
The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

A* graph search is optimal

A

Ch=4 h=1
1

h=3

45

G

Consistency of Heuristics
• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

• Consequences of consistency:
• The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

=> g(A) + h(A) ≤ g(A) + c(A,C) + h(C)

=> f(A) ≤ g(C)+h(C)=f(C)

• A* graph search is optimal

A

Ch=4 h=1
1

h=3

46

G

Optimality of A* Graph Search

• Sketch: consider what A* does with a
consistent heuristic:

• Fact 1: A* expands nodes in increasing total 𝑓
value (f-contours)

• Fact 2: For every state 𝑠, nodes that reach 𝑠
optimally are expanded before nodes that
reach 𝑠 suboptimally

• Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1

47

Optimality
• Tree search:
• A* is optimal if heuristic is admissible
• UCS is a special case (h = 0)

• Graph search:
• A* optimal if heuristic is consistent
• UCS optimal (h = 0 is consistent)

• Consistency implies admissibility

• In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

48

Admissible vs. Consistent
(Tree vs. Graph Search)

49

• Consistent heuristic: When selecting a node for expansion, the
path with the lowest cost to that node has been found

• When an admissible heuristic is not consistent, a node will
need repeated expansion, every time a new best (so-far) cost
is achieved for it.

Contours in the state space
• A* (using GRAPH-SEARCH) expands nodes in order of

increasing 𝑓 value
• Gradually adds "f-contours" of nodes
• Contour 𝑖 has all nodes with 𝑓 = 𝑓' where𝑓' < 𝑓'+1

50

A* expands all nodes with f(n) < C*
A* expands some nodes with f(n) = C* (nodes on the goal contour)
A* expands no nodes with f(n) > C*⟹ pruning

Properties of A*

…
b

…
b

Uniform-Cost A*

51

UCS vs A* Contours

• Uniform-cost (A* using ℎ(𝑛) = 0) expands
equally in all “directions”

• A* expands mainly toward the goal, but
does hedge its bets to ensure optimality
• More accurate heuristics stretched toward the goal

(more narrowly focused around the optimal path)

Start Goal

Start Goal

States are points in 2-D Euclidean space.
g(n)=distance from start
h(n)=estimate of distance from goal

52

Video of Demo Contours (Empty) -- UCS

53

Video of Demo Contours (Empty) -- Greedy

54

Video of Demo Contours (Empty) – A*

55

Video of Demo Contours (Pacman Small
Maze) – A*

56

Comparison

Greedy (h) Uniform Cost (g) A* (g+h)

57

Robot navigation example

58

• Initial state? Red cell

• States? Cells on rectangular grid (except to obstacle)
• Actions? Move to one of 8 neighbors (if it is not obstacle)
• Goal test? Green cell
• Path cost? Action cost is the Euclidean length of movement

A* vs. UCS: Robot navigation example

59

• Heuristic: Euclidean distance to goal

• Expanded nodes: filled circles in red & green
• Color indicating 𝑔 value (red: lower, green: higher)

• Frontier: empty nodes with blue boundary

• Nodes falling inside the obstacle are discarded

Adopted from: http://en.wikipedia.org/wiki/A*_search_algorithm

Robot navigation: Admissible heuristic

60

• Is Manhattan 𝑑! 𝑥, 𝑦 = 𝑥" − 𝑦" + 𝑥# − 𝑦# distance
an admissible heuristic for previous example?

A*: Inadmissible heuristic

61

ℎ = ℎ_𝑆𝐿𝐷ℎ = 5 ∗ ℎ_𝑆𝐿𝐷

Adopted from: http://en.wikipedia.org/wiki/A*_search_algorithm

A*: Summary
• A* orders nodes in the queue by f(n) = g(n) + h(n)
• A* uses both backward costs and (estimates of) forward costs

• A* is optimal for trees/graphs with admissible/consistent heuristics

• Heuristic design is key: often use relaxed problems

g

g

h h
62

Creating Heuristics

63

Relaxed problem

64

• Relaxed problem: Problem with fewer restrictions on the
actions

• Optimal solution to the relaxed problem may be computed
easily (without search)

• The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem
• The optimal solution is the shortest path in the super-graph of the state-

space.

Creating Admissible Heuristics
• Most of the work in solving hard search problems optimally is in coming

up with admissible heuristics

• Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

• Problem P2 is a relaxed version of P1 if A2(s)ÊA1(s) for every s

• Theorem: h2
*(s) £ h1

*(s) for every s, so h2
*(s) is admissible for P1

• Inadmissible heuristics are often useful too

15
366

65

Example: 8 Puzzle

• What are the states?
• How many states?
• What are the actions?
• What are the step costs?

Start State Goal StateActions

66

8 Puzzle I

• Heuristic: Number of tiles misplaced
• Why is it admissible?
• h(start) = 8

Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

67

8 Puzzle II

• What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

• Total Manhattan distance= sum of
Manhattan distance of tiles from their
target position

• Why is it admissible?

• h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

A*TILES 13 39 227
A*MANHATTAN 12 25 73

Start State Goal State

68

Relaxed problem: 8-puzzle
• 8-Puzzle: move a tile from square A to B if A is adjacent
(left, right, above, below) to B and B is blank
• Relaxed problems

1. can move from A to B if A is adjacent to B (ignore whether or not
position is blank)

2. can move from A to B if B is blank (ignore adjacency)
3. can move from A to B (ignore both conditions)

• Admissible heuristics for original problem (ℎ1(𝑛) and
ℎ2(𝑛)) are optimal path costs for relaxed problems
• First case: a tile can move to any adjacent square ⇒ ℎ2(𝑛)

• Third case: a tile can move anywhere⇒ ℎ1(𝑛)

69

Combining heuristics
• Dominance: h1 ≥ h2 if "n: h1(n) ³ h2(n)
• Roughly speaking, larger is better as long as both are admissible
• The zero heuristic is pretty bad (what does A* do with h=0?)
• The exact heuristic is pretty good, but usually too expensive!

• What if we have two heuristics, neither dominates the other?
• Form a new heuristic by taking the max of both:

h(n) = max(h1(n), h2(n))
• Max of admissible heuristics is admissible and dominates both!

70

Heuristic quality
• If ∀𝑛, ℎ2(𝑛) ≥ ℎ1(𝑛) (both admissible)

then ℎ2 dominates ℎ1 and it is better for search

• Surely expanded nodes: 𝑓 𝑛 < 𝐶∗ ⇒ ℎ 𝑛 < 𝐶∗ − 𝑔 𝑛
• If ℎ2(𝑛) ≥ ℎ1(𝑛) then every node expanded for ℎ2 will also be surely

expanded with ℎ1 (ℎ1 may also causes some more node expansion)

71

8 Puzzle: heuristic

• How about using the actual cost as a heuristic?
• Would it be admissible?
• Would we save on nodes expanded?
• What’s wrong with it?

• With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but usually

do more work per node to compute the heuristic itself

72

Example: Knight’s moves
• Minimum number of knight’s moves to get from A to B?
• h1 = (Manhattan distance)/3

• h1’ = h1 rounded up to correct parity (even if A, B same color, odd otherwise)

• h2 = (Euclidean distance)/√5 (rounded up to correct parity)
• h3 = (max x or y shift)/2 (rounded up to correct parity)

• h(n) = max(h1’(n), h2(n), h3(n)) is admissible!

73

A* Applications
• Video games
• Pathing / routing problems
• Resource planning problems
• Robot motion planning
• Language analysis
• Machine translation
• Speech recognition
• Protein design
• Chemical synthesis
• …

74

Memory bounded methods
• A* keeps the entire explored region in memory
• => will run out of space before you get bored waiting for the answer
• There are variants that use less memory (Section 3.5.5):
• IDA* works like IDS, except it uses an f-limit instead of a depth limit
• RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best

alternative path available from any ancestor of the current node
• SMA* uses all available memory for the queue, minimizing thrashing

75

