Informed Search: A* Algorithm

CE417: Introduction to Artificial Intelligence Sharif University of Technology Fall 2023

Soleymani

Most slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.

Uninformed search

Uniform Cost Search

• Strategy: expand lowest path cost

• The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

UCS example

What we would like to have happen

Guide search *towards the goal* instead of *all over the place*

Informed

Uninformed

Example: Route-finding in Romania

6

Search heuristics

- A heuristic is:
 - A function that *estimates* how close a state is to a goal
 - Designed for a particular search problem
 - Examples: Manhattan distance, Euclidean distance for pathing

Example: Pathing in pacman

- $h(n) = Manhattan distance = |\Delta x| + |\Delta y|$
- Is Manhattan better than straight-line distance?

- Priority queue based on h(n)
 - e.g., $h_{SLD}(n) = \text{straight-line distance from } n$ to Bucharest
- Greedy search expands the node that appears to be closest to goal Straight-line distance Oradea to Bucharest Greedy Neamt Arad 366 Bucharest 0 87 Zerind 151 Craiova 160 75 Dobreta Iasi 242 Arad Eforie 140 161 92 Fagaras 178 Sibiu 99 Fagaras Giurgiu 77 118 Hirsova 🗋 Vaslui 151 80 Iasi 226 **Rimnicu Vilcea** Lugoj 244 Timisoara Mehadia 241 42 211 Neamt 234 Pitesti 🔲 Lugoj Oradea 380 70 98 Pitesti 98 Hirsova 146 85 Rimnicu Vilcea 193 🗖 Mehadia Urziceni 86 Sibiu 253 75 38 Bucharest Timisoara 329 120 Dobreta Urziceni 80 90 Þ Craiova Craiova Vaslui 199 Eforie 📫 Giurgiu Zerind 374

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal

• Worst-case: like a badly-guided DFS

Properties of greedy search

<u>Complete?</u>No

- Similar to DFS, only graph search version is complete in finite spaces
- Infinite loops, e.g., (lasi to Fagaras) lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt

• <u>Time</u>

O(b^m), but a good heuristic can give dramatic improvement

• <u>Space</u>

- $O(b^m)$: keeps all nodes in memory
- Optimal? No

Video of demo contours greedy (Empty)

Video of demo contours greedy (Pacman small maze)

A* search

A*: The core idea

- Expand a node *n* most likely to be on an optimal path
- Expand a node n s.t. the cost of the best solution through n is optimal
- Expand a node *n* with lowest value of $g(n) + h^*(n)$
 - g(n) is the cost from root to n
 - $h^*(n)$ is the optimal cost from *n* to the closest goal
- We seldom know h^{*}(n) but might have a heuristic approximation h(n)
- A^* = tree search with priority queue ordered by f(n) = g(n) + h(n)

A^* search

- Idea: minimizing the total estimated solution cost
- Evaluation function for priority f(n) = g(n) + h(n)
 - g(n) = cost so far to reach n
 - h(n) = estimated cost of the cheapest path from n to goal
 - So, f(n) = estimated total cost of path through n to goal

A*: Combining UCS and Greedy

• Uniform-cost orders by path cost, or *backward cost* g(n)

• **Greedy** orders by goal proximity, or *forward cost* h(n)

Example: Teg Grenager

A* termination

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

What went wrong?

- Actual bad solution cost < estimated good solution cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the frontier

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

 $0 \le h(n) \le h^*(n)$

- where $h^*(n)$ is the true cost to a nearest goal
- Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

A^{*} search: example

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

• A will exit the frontier before B

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$\begin{aligned} f(n) &= g(n) + h(n) & \text{Det} \\ f(n) &\leq g(n) + h^*(n) & \text{Ac} \\ f(n) &\leq g(A) & g(A) \\ g(A) &= f(A) & \text{his} \end{aligned}$$

Definition of f-cost Admissibility of h $g(A) = g(n) + h^*(n)$ h = 0 at a goal

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

g(A) < g(B)f(A) < f(B) B is suboptimal h = 0 at a goal

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B

 $f(n) \le f(A) < f(B)$

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

Graph Search

Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work.

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?
A* Graph Search Gone Wrong?

State space graph

Simple check against expanded set blocks C

Fancy check allows new C if cheaper than old but requires recalculating C's descendants

Conditions for optimality of A^{*}

- Admissibility: h(n) be a lower bound on the cost to reach goal
 - Condition for optimality of TREE-SEARCH version of A*
- Consistency (monotonicity): $h(n) \le c(n, a, n') + h(n')$
 - Condition for optimality of GRAPH-SEARCH version of A*

for every node n and every successor n' generated by any action a

$$h(n) \le c(n, a, n') + h(n')$$

c(n, a, n'): cost of generating n' by applying action to n

Consistency implies admissibility

- Consistency \Rightarrow Admissblity
 - All consistent heuristic functions are admissible
 - Nonetheless, most admissible heuristics are also consistent

$$n_1 \xrightarrow{c(n_1, a_1, n_2)} c(n_2, a_2, n_3) \xrightarrow{c(n_k, a_k, G)} a_2 \xrightarrow{c(n_k, a_k, G)} a_3 \dots \xrightarrow{c(n_k, a_k, G)} a_k$$

$$h(n_1) \le c(n_1, a_1, n_2) + h(n_2)$$

$$\le c(n_1, a_1, n_2) + c(n_2, a_2, n_3) + h(n_3)$$

...

$$\le \sum_{i=1}^k c(n_i, a_i, n_{i+1}) + h(G)$$

Consistency implies admissibility

- Consistency \Rightarrow Admissblity
 - All consistent heuristic functions are admissible
 - Nonetheless, most admissible heuristics are also consistent

$$n_1 \xrightarrow{c(n_1, a_1, n_2)} c(n_2, a_2, n_3) \xrightarrow{c(n_k, a_k, G)} a_2 \xrightarrow{c(n_k, a_k, G)} a_3 \dots \xrightarrow{n_k} a_k \xrightarrow{c(n_k, a_k, G)} a_k$$

$$h(n_1) \le c(n_1, a_1, n_2) + h(n_2)$$

$$\le c(n_1, a_1, n_2) + c(n_2, a_2, n_3) + h(n_3)$$

...

$$\le \sum_{i=1}^k c(n_i, a_i, n_{i+1}) + h(\mathbf{0})$$

Consistency implies admissibility

- Consistency \Rightarrow Admissblity
 - All consistent heuristic functions are admissible
 - Nonetheless, most admissible heuristics are also consistent

$$n_1 \xrightarrow{c(n_1, a_1, n_2)} n_2 \xrightarrow{c(n_2, a_2, n_3)} \dots \xrightarrow{c(n_k, a_k, G)} G$$

$$\begin{split} h(n_1) &\leq c(n_1, a_1, n_2) + h(n_2) \\ &\leq c(n_1, a_1, n_2) + c(n_2, a_2, n_3) + h(n_3) \\ & \dots \\ &\leq \sum_{i=1}^k c(n_i, a_i, n_{i+1}) + h(\mathbf{0}) \quad \Rightarrow h(n_1) \leq \text{cost of (every) path from } n_1 \text{ to goal} \\ &\leq \text{cost of optimal path from } n_1 \text{ to goal} \end{split}$$

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \leq actual cost from A to G$

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \leq actual cost from A to G$

Consistency: heuristic "arc" cost ≤ actual cost for each arc

 $h(A) - h(C) \le cost(A to C)$

• Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \leq actual cost from A to G$

Consistency: heuristic "arc" cost ≤ actual cost for each arc

 $h(A) - h(C) \le cost(A to C)$

or $h(A) \le c(A,C) + h(C)$ (triangle inequality) Note: h* <u>necessarily</u> satisfies triangle inequality

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \leq actual cost from A to G$

• Consistency: heuristic "arc" cost ≤ actual cost for each arc

 $h(A) - h(C) \le cost(A to C)$

h=3

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \leq actual cost from A to G$

- Consistency: heuristic "arc" cost ≤ actual cost for each arc
 h(A) h(C) ≤ cost(A to C)
- Consequences of consistency:
 - The f value along a path never decreases

 $h(A) \le cost(A to C) + h(C)$

 $=> g(A) + h(A) \le g(A) + c(A,C) + h(C)$

 $\Rightarrow f(A) \leq g(C) + h(C) = f(C)$

• A* graph search is optimal

h=4

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility

Admissible vs. Consistent (Tree vs. Graph Search)

- Consistent heuristic: When selecting a node for expansion, the path with the lowest cost to that node has been found
- When an admissible heuristic is not consistent, a node will need repeated expansion, every time a new best (so-far) cost is achieved for it.

Contours in the state space

- A* (using GRAPH-SEARCH) expands nodes in order of increasing *f* value
- Gradually adds "*f*-contours" of nodes
 - Contour *i* has all nodes with $f = f_i$ where $f_i < f_{i+1}$

A* expands all nodes with $f(n) < C^*$

A* expands some nodes with $f(n) = C^*$ (nodes on the goal contour) A* expands no nodes with $f(n) > C^* \Longrightarrow$ pruning

Properties of A*

UCS vs A* Contours

 Uniform-cost (A* using h(n) = 0) expands equally in all "directions"

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
 - More accurate heuristics stretched toward the goal (more narrowly focused around the optimal path)

States are points in 2-D Euclidean space. g(n)=distance from start

h(n)=estimate of distance from goal

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy (h)

Uniform Cost (g)

A* (g+h)

Robot navigation example

- Initial state? Red cell
- <u>States?</u> Cells on rectangular grid (except to obstacle)
- <u>Actions?</u> Move to one of 8 neighbors (if it is not obstacle)
- Goal test? Green cell
- Path cost? Action cost is the Euclidean length of movement

A* vs. UCS: Robot navigation example

- Heuristic: Euclidean distance to goal
- Expanded nodes: filled circles in red & green
 - Color indicating *g* value (red: lower, green: higher)
- Frontier: empty nodes with blue boundary
- Nodes falling inside the obstacle are discarded

Robot navigation: Admissible heuristic

• Is Manhattan $d_M(x, y) = |x_1 - y_1| + |x_2 - y_2|$ distance an admissible heuristic for previous example?

A*: Inadmissible heuristic

 $h = 5 * h_SLD$ $h = h_SLD$

Adopted from: http://en.wikipedia.org/wiki/A*_search_algorithm

A*: Summary

- A* orders nodes in the queue by f(n) = g(n) + h(n)
 - A* uses both backward costs and (estimates of) forward costs
- A* is optimal for trees/graphs with admissible/consistent heuristics
- Heuristic design is key: often use relaxed problems

Creating Heuristics

Relaxed problem

- Relaxed problem: Problem with fewer restrictions on the actions
- Optimal solution to the relaxed problem may be computed easily (without search)
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
 - The optimal solution is the shortest path in the super-graph of the statespace.

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

- Problem P_2 is a relaxed version of P_1 if $\mathcal{A}_2(s) \supseteq \mathcal{A}_1(s)$ for every s
- Theorem: $h_2^*(s) \le h_1^*(s)$ for every *s*, so $h_2^*(s)$ is admissible for P_1
- Inadmissible heuristics are often useful too

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What are the step costs?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
A*TILES	13	39	227	

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance= sum of Manhattan distance of tiles from their target position

Start State

Goal State

- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
A*TILES	13	39	227	
A*MANHATTAN	12	25	73	

Relaxed problem: 8-puzzle

- 8-Puzzle: move a tile from square A to B if <u>A is adjacent</u> (left, right, above, below) to B and B is blank
 - Relaxed problems
 - 1. can move from A to B if A is adjacent to B (ignore whether or not position is blank)
 - 2. can move from A to B if B is blank (ignore adjacency)
 - 3. can move from A to B (ignore both conditions)
- Admissible heuristics for original problem $(h_1(n))$ and $h_2(n)$ are optimal path costs for relaxed problems
 - First case: <u>a tile can move to any adjacent square</u> \Rightarrow $h_2(n)$
 - Third case: <u>a tile can move anywhere</u> \Rightarrow $h_1(n)$

Combining heuristics

- Dominance: $h_1 \ge h_2$ if $\forall n: h_1(n) \ge h_2(n)$
 - Roughly speaking, larger is better as long as both are admissible
 - The zero heuristic is pretty bad (what does A* do with h=0?)
 - The exact heuristic is pretty good, but usually too expensive!
- What if we have two heuristics, neither dominates the other?
 - Form a new heuristic by taking the max of both:

$h(n) = \max(h_1(n), h_2(n))$

Max of admissible heuristics is admissible and dominates both!

Heuristic quality

- If ∀n, h₂(n) ≥ h₁(n) (both admissible)
 then h₂ dominates h₁ and it is better for search
- Surely expanded nodes: $f(n) < C^* \Rightarrow h(n) < C^* g(n)$
 - If $h_2(n) \ge h_1(n)$ then every node expanded for h_2 will also be surely expanded with h_1 (h_1 may also causes some more node expansion)

8 Puzzle: heuristic

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

 As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself
Example: Knight's moves

- Minimum number of knight's moves to get from A to B?
 - h₁ = (Manhattan distance)/3
 - $h_1' = h_1$ rounded up to correct parity (even if A, B same color, odd otherwise)
 - h_2 = (Euclidean distance)/V5 (rounded up to correct parity)
 - *h*₃ = (max x or y shift)/2 (rounded up to correct parity)
- $h(n) = \max(h_1'(n), h_2(n), h_3(n))$ is admissible!

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- Protein design
- Chemical synthesis

Memory bounded methods

- A* keeps the entire explored region in memory
- => will run out of space before you get bored waiting for the answer
- There are variants that use less memory (Section 3.5.5):
 - IDA* works like IDS, except it uses an *f*-limit instead of a depth limit
 - RBFS is a recursive depth-first search that uses an *f*-limit = the *f*-value of the best alternative path available from any ancestor of the current node
 - SMA* uses all available memory for the queue, minimizing thrashing

